skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rappé, Michael S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The orderPelagibacterales(SAR11) is the most abundant group of heterotrophic bacteria in the global surface ocean, where individual sublineages likely play distinct roles in oceanic biogeochemical cycles. Yet, understanding the determinants of niche partitioning within SAR11 has been a formidable challenge due to the high genetic diversity within individual SAR11 sublineages and the limited availability of high-quality genomes from both cultivation and metagenomic reconstruction. Here, we take advantage of 71 new SAR11 genomes from strains we isolated from the tropical Pacific Ocean to evaluate the distribution of metabolic traits across thePelagibacteraceae,a recently classified family within the orderPelagibacteralesencompassing subgroups Ia and Ib. Our analyses of metagenomes generated from stations where the strains were isolated reveals distinct habitat preferences across SAR11 genera for coastal or offshore environments, and subtle but systematic differences in metabolic potential that support these observations. We also observe higher levels of selective forces acting on habitat-specific metabolic genes linked to SAR11 fitness and polyphyletic distributions of habitat preferences and metabolic traits across SAR11 genera, suggesting that contrasting lifestyles have emerged across multiple lineages independently. Together, these insights reveal niche-partitioning within sympatric and parapatric populations of SAR11 and demonstrate that the immense genomic diversity of SAR11 bacteria naturally segregates into ecologically and genetically cohesive units, or ecotypes, that vary in spatial distributions in the tropical Pacific. 
    more » « less
    Free, publicly-accessible full text available December 24, 2025
  2. Abstract The bacterial orderPelagibacterales(SAR11) is among the most abundant and widely distributed microbial lineages across the global surface ocean, where it forms an integral component of the marine carbon cycle. However, the limited availability of high-quality genomes has hampered comprehensive insights into the ecology and evolutionary history of this critical group. Here, we increase the number of complete SAR11 isolate genomes fourfold by describing 81 new SAR11 strains from seven distinct lineages isolated from coastal and offshore surface seawater of the tropical Pacific Ocean. We leveraged comprehensive phylogenomic insights afforded by these isolates to characterize 24 monophyletic, discrete ecotypes with unique spatiotemporal patterns of distribution across the global ocean, which we define as genera. Our data illustrate fine-scale differentiation in patterns of detection with ecologically-relevant gene content variation for some closely related genomes, demonstrating instances of ecological speciation within SAR11 genera. Our study provides unique insight into complex environmental SAR11 populations, and proposes an ecology-informed hierarchy to pave a path forward for the systematic nomenclature for this clade. 
    more » « less
    Free, publicly-accessible full text available December 24, 2025
  3. An integrated analysis framework shows a strong association between within-population genetic variation and protein structure. 
    more » « less
  4. null (Ed.)
  5. Poretsky, Rachel (Ed.)
    ABSTRACT Among the thousands of species that comprise marine bacterioplankton communities, most remain functionally obscure. One key cosmopolitan group in this understudied majority is the OM252 clade of Gammaproteobacteria . Although frequently found in sequence data and even previously cultured, the diversity, metabolic potential, physiology, and distribution of this clade has not been thoroughly investigated. Here, we examined these features of OM252 bacterioplankton using a newly isolated strain and genomes from publicly available databases. We demonstrated that this group constitutes a globally distributed novel genus (“ Candidatus Halomarinus”), sister to Litoricola , comprising two subclades and multiple distinct species. OM252 organisms have small genomes (median, 2.21 Mbp) and are predicted obligate aerobes capable of alternating between chemoorganoheterotrophic and chemolithotrophic growth using reduced sulfur compounds as electron donors. Subclade I genomes encode genes for the Calvin-Benson-Bassham cycle for carbon fixation. One representative strain of subclade I, LSUCC0096, had extensive halotolerance and a mesophilic temperature range for growth, with a maximum rate of 0.36 doublings/h at 35°C. Cells were curved rod/spirillum-shaped, ∼1.5 by 0.2 μm. Growth yield on thiosulfate as the sole electron donor under autotrophic conditions was roughly one-third that of heterotrophic growth, even though calculations indicated similar Gibbs energies for both catabolisms. These phenotypic data show that some “ Ca. Halomarinus” organisms can switch between serving as carbon sources or sinks and indicate the likely anabolic cost of lithoautotrophic growth. Our results thus provide new hypotheses about the roles of these organisms in global biogeochemical cycling of carbon and sulfur. IMPORTANCE Marine microbial communities are teeming with understudied taxa due to the sheer numbers of species in any given sample of seawater. One group, the OM252 clade of Gammaproteobacteria , has been identified in gene surveys from myriad locations, and one isolated organism has even been genome sequenced (HIMB30). However, further study of these organisms has not occurred. Using another isolated representative (strain LSUCC0096) and publicly available genome sequences from metagenomic and single-cell genomic data sets, we examined the diversity within the OM252 clade and the distribution of these taxa in the world’s oceans, reconstructed the predicted metabolism of the group, and quantified growth dynamics in LSUCC0096. Our results generate new knowledge about the previously enigmatic OM252 clade and point toward the importance of facultative chemolithoautotrophy for supporting some clades of ostensibly “heterotrophic” taxa. 
    more » « less
  6. null (Ed.)
  7. Abstract The exploration of Earth’s terrestrial subsurface biosphere has led to the discovery of several new archaeal lineages of evolutionary significance. Similarly, the deep subseafloor crustal biosphere also harbors many unique, uncultured archaeal taxa, including those belonging to Candidatus Hydrothermarchaeota, formerly known as Marine Benthic Group-E. Recently, Hydrothermarchaeota was identified as an abundant lineage of Juan de Fuca Ridge flank crustal fluids, suggesting its adaptation to this extreme environment. Through the investigation of single-cell and metagenome-assembled genomes, we provide insight into the lineage’s evolutionary history and metabolic potential. Phylogenomic analysis reveals the Hydrothermarchaeota to be an early-branching archaeal phylum, branching between the superphylum DPANN, Euryarchaeota, and Asgard lineages. Hydrothermarchaeota genomes suggest a potential for dissimilative and assimilative carbon monoxide oxidation (carboxydotrophy), as well as sulfate and nitrate reduction. There is also a prevalence of chemotaxis and motility genes, indicating adaptive strategies for this nutrient-limited fluid-rock environment. These findings provide the first genomic interpretations of the Hydrothermarchaeota phylum and highlight the anoxic, hot, deep marine crustal biosphere as an important habitat for understanding the evolution of early life. 
    more » « less